Predicting the Thermodynamics and Kinetics of Helix Formation in a Cyclic Peptide Model.
نویسندگان
چکیده
The peptide Ac-(cyclo-2,6)-R[KAAAD]-NH2 (cyc-RKAAAD) is a short cyclic peptide known to adopt a remarkably stable single turn α-helix in water. Due to its simplicity and the availability of thermodynamic and kinetic experimental data, cyc-RKAAAD poses as an ideal model for evaluating the aptness of current molecular dynamics (MD) simulation methodologies to accurately sample conformations that reproduce experimentally observed properties. In this work, we extensively sample the conformational space of cyc-RKAAAD using microsecond-timescale MD simulations. We characterize the peptide conformational preferences in terms of secondary structure propensities and, using Cartesian-coordinate principal component analysis (cPCA), construct its free energy landscape, thus obtaining a detailed weighted discrimination between the helical and nonhelical subensembles. The cPCA state discrimination, together with a Markov model built from it, allowed us to estimate the free energy of unfolding (-0.57 kJ/mol) and the relaxation time (∼0.435 μs) at 298.15 K, which are in excellent agreement with the experimentally reported values (-0.22 kJ/mol and 0.42 μs, Serrano, A. L.; Tucker, M. J.; Gai, F. J. Phys. Chem. B, 2011, 115, 7472-7478.). Additionally, we present simulations conducted using two enhanced sampling methods: replica-exchange molecular dynamics (REMD) and bias-exchange metadynamics (BE-MetaD). We compare the free energy landscape obtained by these two methods with the results from MD simulations and discuss the sampling and computational gains achieved. Overall, the results obtained attest to the suitability of modern simulation methods to explore the conformational behavior of peptide systems with a high level of realism.
منابع مشابه
Analysis of Drug-Drug Interactions with Cyclic Voltammetry: An Overview of Relevant Theoretical Models and Recent Experimental Achievements
In this review, we focus on cyclic voltammetry as a reliable electrochemical technique to study mechanisms, kinetics and thermodynamics of various types of drug-drug interactions. While we present and discuss six theoretical models relevant to analyze drug-drug (or drug-DNA) interactions, we also give hints about recent experimental achievements in this field. In addition, we provide the reader...
متن کاملA MODEL FOR THE BASIC HELIX- LOOPHELIX MOTIF AND ITS SEQUENCE SPECIFIC RECOGNITION OF DNA
A three dimensional model of the basic Helix-Loop-Helix motif and its sequence specific recognition of DNA is described. The basic-helix I is modeled as a continuous ?-helix because no ?-helix breaking residue is found between the basic region and the first helix. When the basic region of the two peptide monomers are aligned in the successive major groove of the cognate DNA, the hydrophobi...
متن کاملThermodynamics and Kinetics of Spiro-Heterocycle Formation Mechanism: Computational Study
Reaction mechanism among indoline-2,3-dione, pyrrolidine-2-carboxylic acid and (Z)-2-(1-(2-hydroxynaphthalen-1-yl)ethylidene)hydroxycarboxamide to form 1’-((((aminooxy)carbonyl)amino)methyl)-2’-(1-hydroxynaphthalen-2-yl)-2’-methyl-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolo[1,2-a]imidazole-2-one was investigated using density functional theory (DFT) at B3LYP basis theory. The three-...
متن کاملExperimental Measurement and Kinetic Modeling of Ethane Gas Hydrate in the Presence of Sodium Dodecyl Sulfate Surfactant
 Abstract: In this work, the kinetics of ethane hydrate formation has been studied experimentally and a kinetic model based on chemical affinity has been described for predicting the hydrate growth process in the stirred batch reactor at a constant volume. The experiments were done with both pure water and aqueous solution of sodium dodecyl sulfate (SDS). The effect of SDS on formation kineti...
متن کاملHydrothermal Synthesis of Cobalt Disulfide Nanostructures and Adsorption Kinetics, Isotherms, and Thermodynamics of Tetracycline
Surfaces of synthesis cobalt disulfide has high electron density that could interact with polycyclic aromatic compounds by π-π stacking. Cobalt disulfide was synthesized with the hydrothermal method and characterized by field emission scanning electron microscopy, X-ray diffraction and energy-dispersive X-ray. Using tetracycline as a model analyte, the batch adsorption experiments were c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical theory and computation
دوره 9 11 شماره
صفحات -
تاریخ انتشار 2013